Modular (Remainder) Arithmetic

$$
\begin{aligned}
& \mathrm{n}=\mathrm{qk}+\mathrm{r}(\text { for some } \mathrm{k} ; \mathrm{r}<\mathrm{k}) \quad \longrightarrow \mathrm{n} \bmod \mathrm{k}=\mathrm{r} \\
& \text { eg } 37=(2)(17)+3
\end{aligned} \quad 37 \bmod 17=3
$$

Divisibility notation: 17|37-3

Sets of Remainders

x	$\mathrm{x} \bmod 5$	
$-2(5-2)$	3	
$-1(5-1)$	*	
0	4	
1	0	
2	1	
3	2	
4	4	
5	0	
6	1	
7	2	* Compilers may
8	3	not handle this...

Congruences

$\bmod 5:$

$$
\begin{aligned}
& 0=5=10 \longrightarrow(0 \bmod 5)=(5 \bmod 5)=(10 \bmod 5) \\
& 1=6=11 \ldots \\
& 2=7=12 \ldots \\
& 3=8=13 \ldots \\
& 4=9=14(=-1=-6)
\end{aligned}
$$

Operations

$(x+y) \bmod n=(x \bmod n+y \bmod n) \bmod n$ $(x-y) \bmod n=(x \bmod n-y \bmod n) \bmod n$
$x y \bmod n=(x \bmod n)(y \bmod n) \bmod n$

1
$\left(a+k_{1} n\right)\left(b+n k_{2} n\right)=a b+n\left(b k_{1}+a k_{2}+n k_{1} k_{2}\right)$

'Shortcuts' to prevent overflow

Example: last digit of $\mathrm{n}^{\text {th }}$ Fibonacci number
Example: 373! mod 997
$=((((1 \bmod 997) * 2 \bmod 997) * 3 \bmod 997) * 4 \bmod 997) \ldots$

'Division'

$$
\mathrm{ax}=\mathrm{b}(\bmod \mathrm{~m})
$$

Eg: $5 \mathrm{x}=7(\bmod 11)$
Solution: $5(8)=40=(11)(3)+7$

Euclidean Algorithm

```
gcd(43, 29) = gcd(43 mod 29, 29)
4 3
29
14
1 relatively prime
Bezout's Identity:
gcd(a,b)=au+bv
    1=au+ bv (if a, b relatively prime)
    ua=1-bv=1(mod b)
u}=\mp@subsup{\textrm{a}}{}{-1}(\operatorname{mod}b
```


Extended Euclidean Algorithm

		$43:$	$29:$
q	r	u	v
-	43	1	0
-	29	0	1
1	14	1	-1
2	1	-2	3
14	0	-	-
$1=-2(43)+3(29)$	\longrightarrow	$(3)(29)=1(\bmod 43)$	
$\mathrm{a}(29)=5(\bmod 43)$			
$(5)(29-1)=5 * 3 \bmod 43=15$ $(15)(29) \bmod 43=435 \bmod 43=5$			

Non prime cases:

$\mathrm{ax}=\mathrm{b}(\bmod \mathrm{m}) \quad \operatorname{gcd}(\mathrm{a}, \mathrm{m})=\mathrm{d} ? 1$
if $\mathrm{d} \mid \mathrm{b}$ problem has multiple solutions
Eg: $2 \mathrm{x}=3(\bmod 10)$
$\operatorname{gcd}(2,10)=2$
but 3 is not divisible by 2
no solution

Eg: $2 \mathrm{x}=4(\bmod 10)$	divide through by gcd
$\mathrm{x}=2(\bmod 5)$	
$\longrightarrow \mathrm{x}=2$ or $7(\bmod 10)$	(add multiples of 5$)$

Chinese Remainder Theorem

$$
\begin{aligned}
& \text { Given } \mathrm{x}=\mathrm{a}_{\mathrm{k}}\left(\bmod \mathrm{~m}_{\mathrm{k}}{ }^{*}\right) \\
& \text { for } \mathrm{k}=1,2, \ldots \\
& \text { eg: } \\
& \mathrm{x}=1 \bmod 2 \\
& x=2 \bmod 3 \\
& \mathrm{x}=3 \bmod 5 \\
& \mathrm{~N}=? \mathrm{~m}_{\mathrm{k}}=2 * 3 * 5=30 \\
& \mathrm{n}_{\mathrm{k}}=\mathrm{N} / \mathrm{m}_{\mathrm{k}} \\
& \text { eg: } \\
& \mathrm{n}_{1}=30 / 2=15 \text { etc } \ldots \\
& \mathrm{y}_{\mathrm{k}}=\mathrm{n}_{\mathrm{k}}{ }^{-1}\left(\bmod \mathrm{~m}_{\mathrm{k}}\right) \\
& \text { eg: } \\
& \mathrm{y}_{1} \quad=15^{-1}(\bmod 2) \\
& =1^{-1}(\bmod 2)=1 \\
& \mathrm{x}=\left(\mathrm{a}_{1} \mathrm{n}_{1} \mathrm{y}_{1}+\mathrm{a}_{2} \mathrm{n}_{2} \mathrm{y}_{2}+\ldots\right) \\
& \bmod \mathrm{N} \\
& e g x=23 \bmod 30 \\
& \text { *all relatively prime }
\end{aligned}
$$

Not relatively prime

eg:
$x=3 \bmod 6$
$x=7 \bmod 10$

$$
\operatorname{gcd}(6,10)=2
$$

Split:
$\mathrm{x}=1 \bmod 2 \leftarrow$ don't contradict $\longrightarrow \mathrm{x}=1 \bmod 2$
$x=0 \bmod 3 \quad x=2 \bmod 5$
thus recombine to give $x=27 \bmod 30$

Matrices:

(solving linear equations with detached coefficients)

$$
\begin{aligned}
& x+y+z=5 \\
& x-y+2 z=3 \\
& x+y-3 z=0
\end{aligned}
$$

$$
\left(\begin{array}{rrrrr}
1 & 1 & 1 & : & 5 \\
0 & -2 & 1 & : & -2 \\
0 & 0 & -4 & : & -5
\end{array}\right)
$$

$$
\begin{array}{ccccc}
(1) & * & 1 & 1 & : \\
1 & -1 & 2 & : & 3 \\
1 & 1 & -3 & : & 0
\end{array}
$$

* pivot

Remainder Matrices

$$
\begin{aligned}
& x+y+z=5 \\
& x-y+2 z=3 \\
& x+y-3 z=0
\end{aligned}
$$

taking $\bmod 3$:
$\left(\begin{array}{lllll}1 & 1 & 1 & : & 2 \\ 0 & 1 & 1 & : & 1 \\ 0 & 0 & 2 & : & 1\end{array}\right)$
$\left(\begin{array}{ccccc}1 & 1 & 1 & : & 2 \\ 1 & 2 & 2 & : & 0 \\ 1 & 1 & 0 & : & 0\end{array}\right) \quad \begin{gathered}2 z=1(\bmod 3) \\ z=2 \\ y=2 \\ x=1\end{gathered}$

The easiest case: the prime case

Mod a prime, every number except 0 has an inverse

Thus, we can multiply a row by the inverse of the pivot

Non-prime mods

Use fundamental theorem of arithmetic and Chinese Remainder Theorem

The prime power case

2 and 3 were relatively prime, but what if you were working mod 12 ? $12=3 * 2^{2}$.
Can't use Chinese remainder theorem since 2 and 2 are not relatively prime. Instead, work $\bmod 2^{2}$ and find pivot n such that: $\mathrm{n} \bmod 2^{\mathrm{k}}$? 0
for smallest possible k .
For example, if working mod 32 and the possible pivots are 12,8 and 16 , pivot around the 12 since $12 \bmod 8$? 0 .

In this case you cannot find $12 \mathrm{x}=1(\bmod 32)$, instead solve for $12 \mathrm{x}=4(\bmod 32)$. This can be done via extended Euclid since $\operatorname{gcd}(12,32)=4$ and yields $12 * 3=4(\bmod 32)$. Thus multiply the pivot row by 3 .

Example

Mod 32:
$\left(\begin{array}{lllll}8 & 5 & 3 & : & 27 \\ 12 & 3 & 5 & : & 1 \\ 16 & 2 & 1 & : & 23\end{array}\right)$

Move first row to top (current pivot row) and multiply by 3:

$$
\left(\begin{array}{lllll}
4 & 9 & 15 & : & 3 \\
8 & 5 & 3 & : & 27 \\
16 & 2 & 1 & : & 23
\end{array}\right)
$$

$$
\left(\begin{array}{lllll}
4 & 9 & 15 & : & 3 \\
0 & 19 & 5 & : & 21 \\
0 & 30 & 5 & : & 11
\end{array}\right)
$$

Now $19 \bmod 2=1$ thus can find $19^{-1} \bmod 32=27$
$\left(\begin{array}{lllll}4 & 9 & 15 & : & 3 \\ 0 & 1 & 7 & : & 23 \\ 0 & 0 & 19 & : & 25\end{array}\right)$

Which yields $\mathrm{x}_{1}=1, \mathrm{x}_{2}=2, \mathrm{x}_{3}=3$

Special case: mod 2

 $\bmod 2$:$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

equivalent to binary xor

So...

Unlike simultaneous 'or' equations which are NP-Complete, simultaneous 'xor' equations are solvable in polynomial (generally cubic) time via Gaussian elimination.

CEOI Example: X-Planet

X-Planet: given a set of lightbulbs, all initially off, and switches which each toggle the state of a given set of lightbulbs, determine any combination of switches which will turn on all the lightbulbs.

Equations: each lightbulb's state is affected by certain switches and in total an odd amount of these must be pressed.

IOI Example: Clocks

Given: a set of clocks in different positions, and controls which rotate a subset of clocks, determine the shortest sequence of moves to rotate all clocks to 12:00

- The original question limites the number of clocks to 9 and the possible positions on each clock to 4 , so this is solvable (more easily) by brute force.
- Mod equations where you have more variables than equations will usually give multiple possible solutions. To determine an optimal solution you would still have to search within these; however the search would be reduced.

Binary Manipulation

English	Sets	Pascal	C
and (1)	intersection	and	$\&$
or	union	or	।
toggle/xor (2)	unionlintersection	xor	^
left shift	-	shl	\ll
right shift (3)	-	shr	\gg

(1) can be equivalent to mod by powers of 2
(2) equivalent to adding bits mod 2
(3) equivalent to multiplying and (integer) dividing by powers of 2

Advantages

Depending on machine word size, these operations can work on 32 bits at once.

They are all small operations.

Eg: when working mod 2 with 31 or fewer variables, store as an integer. To add two rows, just xor them. To determine which row next to use as a pivot, just sort in descending order.

Binary Euclidean Algorithm

(1) If M, N even:

$$
\operatorname{gcd}(\mathrm{M}, \mathrm{~N})=2 * \operatorname{gcd}(\mathrm{M} / 2, \mathrm{~N} / 2)
$$

(2) If M even while N is odd:

$$
\operatorname{gcd}(\mathrm{M}, \mathrm{~N})=\operatorname{gcd}(\mathrm{M} / 2, \mathrm{~N})
$$

(3) If M, N odd:

$$
\operatorname{gcd}(\mathrm{M}, \mathrm{~N})=\operatorname{gcd}(\min (\mathrm{M}, \mathrm{~N}),|\mathrm{M}-\mathrm{N}|)
$$

(replace larger with (larger - smaller); this will then be even and (1) can be applied.)

Binary Euclidean Algorithm

Disadvantage

In general, requires a few more steps

Advantage

Requires only binary shifts, binary ands, subtractions and if statements.

These operations are much faster than divisions and mods.

Extended Binary Euclid?

Possible, eg:
During halving stage:
$\operatorname{gcd}(7,8)=\operatorname{gcd}(7,4)$
Given $1=-1 * 7+2 * 4$, ie $-1 * 7=1(\bmod 4)$
We can deduce $-1 * 7$ or $(-1+4) * 7=1(\bmod 8)$
$\operatorname{gcd}(7,4)=\operatorname{gcd}(7,2)$
Given $1=1 * 7+-3 * 2$, ie $-3 * 2=1(\bmod 7)$
We can deduce $-3 * 4 * 2^{-1}=1(\bmod 7)$
2^{-1} can always be found quickly

Possible, but complicated

Summary

Type of problems to tackle with simultaneous mod equations: Toggle/cyclic states affected linearly by different sets of stimuli, eg bulbs and button presses, eg $7^{\text {th }}$ Guest puzzle.

Use mod theory with:
Anything numeric that could be thought of in terms of remainders.
Use binary operations:
When dealing with sets which can be stored in full and whose intersections/unions etc must be calculated quickly For the binary Euclidean algorithm.

