Modular (Remainder) Arithmetic

$$n = qk + r \text{ (for some k; } r < k) \implies n \mod k = r$$

eg 37 = (2)(17) + 3 $\implies 37 \mod 17 = 3$
Divisibility notation: 17 | 37 - 3

Sets of Remainders

* Compilers may not handle this...

Congruences

mod 5:

 $0 = 5 = 10 \implies (0 \mod 5) = (5 \mod 5) = (10 \mod 5)$ 1 = 6 = 11... 2 = 7 = 12... 3 = 8 = 13...4 = 9 = 14 (= -1 = -6)

Operations

 $(x + y) \mod n = (x \mod n + y \mod n) \mod n$ $(x - y) \mod n = (x \mod n - y \mod n) \mod n$

xy mod n = (x mod n)(y mod n) mod n (a + k₁n)(b + nk₂n) = ab + n(bk₁ + ak₂ + n k₁k₂)

Example: last digit of nth Fibonacci number

Example: 373! mod 997

 $= ((((1 \mod 997)) * 2 \mod 997) * 3 \mod 997) * 4 \mod 997)...$

'Division'

 $ax = b \pmod{m}$

Eg: $5x = 7 \pmod{11}$

Solution: 5(8) = 40 = (11)(3) + 7

Euclidean Algorithm

 $gcd(43, 29) = gcd(43 \mod 29, 29)$

Bezout's Identity:

gcd(a, b) = au + bv 1 = au + bv (if a, b relatively prime) $ua = 1 - bv = 1 \pmod{b}$ $u = a^{-1} \pmod{b}$

Extended Euclidean Algorithm

		43:	29:
q	r	u	V
_	43	1	0
-	29	0	1
1	14	1	-1
2	1	-2	3
14	0	-	-

1 = -2(43) + 3(29) \longrightarrow $(3)(29) = 1 \pmod{43}$

 $a(29) = 5 \pmod{43}$ (5)(29⁻¹) = 5*3 mod 43 = 15 (15)(29) mod 43 = 435 mod 43 = 5

Non prime cases:

 $ax = b \pmod{m}$ gcd(a, m) = d?1if d | b problem has multiple solutions

Eg: $2x = 3 \pmod{10}$ gcd(2, 10) = 2 but 3 is not divisible by 2 no solution

Eg: $2x = 4 \pmod{10}$ divide through by gcd $x = 2 \pmod{5}$ $x = 2 \text{ or } 7 \pmod{10}$ (add multiples of 5)

Chinese Remainder Theorem

Given $x = a_k \pmod{m_k^*}$	$y_{k} = n_{k}^{-1} \pmod{m_{k}}$
for $k = 1, 2,$	
	eg:
eg:	$y_1 = 15^{-1} \pmod{2}$
$x = 1 \mod 2$	$= 1^{-1} \pmod{2} = 1$
$x = 2 \mod 3$	
$x = 3 \mod 5$	$x = (a_1 n_1 y_1 + a_2 n_2 y_2 + \dots)$
	mod N
$N = ? m_k = 2*3*5 = 30$	
$n_k = N / m_k$	$eg x = 23 \mod 30$
eg: n = 20/2 = 15 etc	*all relatively prime
$n_1 = 30 / 2 = 15 \text{ etc}$	un retainvery prime

Not relatively prime

```
eg:

x = 3 \mod 6

x = 7 \mod 10

gcd(6, 10) = 2
```

Split: $x = 1 \mod 2 \leftarrow don't \text{ contradict} \longrightarrow x = 1 \mod 2$ $x = 0 \mod 3$ $x = 2 \mod 5$

thus recombine to give $x = 27 \mod 30$

Matrices:

(solving linear equations with detached coefficients)

The easiest case: the prime case

Mod a prime, every number except 0 has an inverse

Thus, we can multiply a row by the inverse of the pivot

Non-prime mods

Use fundamental theorem of arithmetic and Chinese Remainder Theorem

The prime power case

2 and 3 were relatively prime, but what if you were working mod 12? $12 = 3*2^2$.

Can't use Chinese remainder theorem since 2 and 2 are not relatively prime. Instead, work mod 2^2 and find pivot n such that: n mod 2^k ? 0 for smallest possible k.

For example, if working mod 32 and the possible pivots are 12, 8 and 16, pivot around the 12 since 12 mod 8? 0.

In this case you cannot find $12x = 1 \pmod{32}$, instead solve for $12x = 4 \pmod{32}$. This can be done via extended Euclid since gcd(12, 32) = 4 and yields $12*3 = 4 \pmod{32}$. Thus multiply the pivot row by 3.

Example

Move first row to top (current pivot row) and multiply by 3:

$$\begin{pmatrix} 4 & 9 & 15 & : & 3 \\ 0 & 19 & 5 & : & 21 \\ 0 & 30 & 5 & : & 11 \end{pmatrix}$$

Now 19 mod 2 = 1 thus can find $19^{-1} \mod 32 = 27$

4	9	15	•	3
0	1	7	•	23 25
0	0	19	•	25

Which yields $x_1 = 1$, $x_2 = 2$, $x_3 = 3$

Special case: mod 2 mod 2:

0 + 0 = 00 + 1 = 11 + 0 = 11 + 1 = 0

equivalent to binary xor

So...

Unlike simultaneous 'or' equations which are NP-Complete, simultaneous 'xor' equations are solvable in polynomial (generally cubic) time via Gaussian elimination.

CEOI Example: X-Planet

X-Planet: given a set of lightbulbs, all initially off, and switches which each toggle the state of a given set of lightbulbs, determine any combination of switches which will turn on all the lightbulbs.

Equations: each lightbulb's state is affected by certain switches and in total an odd amount of these must be pressed.

IOI Example: Clocks

Given: a set of clocks in different positions, and controls which rotate a subset of clocks, determine the shortest sequence of moves to rotate all clocks to 12:00

• The original question limites the number of clocks to 9 and the possible positions on each clock to 4, so this is solvable (more easily) by brute force.

• Mod equations where you have more variables than equations will usually give multiple possible solutions. To determine an optimal solution you would still have to search within these; however the search would be reduced.

0011010101010 Binary Manipulation

English	Sets	Pascal	С
and (1)	intersection	and	&
or	union	or	I
toggle/xor (2)	union\intersection	xor	Λ
left shift	-	shl	<<
right shift (3)	-	shr	>>

(1) can be equivalent to mod by powers of 2
(2) equivalent to adding bits mod 2
(3) equivalent to multiplying and (integer) dividing by powers of 2

Advantages

Depending on machine word size, these operations can work on 32 bits at once.

They are all small operations.

Eg: when working mod 2 with 31 or fewer variables, store as an integer. To add two rows, just xor them. To determine which row next to use as a pivot, just sort in descending order.

Binary Euclidean Algorithm

```
(1) If M, N even:
gcd(M, N) = 2*gcd(M/2, N/2)
(2) If M even while N is odd:
gcd(M, N) = gcd(M/2, N)
(3) If M, N odd:
gcd(M, N) = gcd(min(M, N), |M - N|)
```

(replace larger with (larger – smaller); this will then be even and (1) can be applied.)

Binary Euclidean Algorithm

Disadvantage

Advantage

In general, requires a few more steps

Requires only binary shifts, binary ands, subtractions and if statements.

These operations are *much* faster than divisions and mods.

Extended Binary Euclid?

Possible, eg:

During halving stage:

gcd(7, 8) = gcd(7, 4)Given 1 = -1*7 + 2*4, ie $-1*7 = 1 \pmod{4}$ We can deduce -1*7 or $(-1 + 4)*7 = 1 \pmod{8}$

gcd(7, 4) = gcd(7, 2)Given 1 = 1*7 + -3*2, ie $-3*2 = 1 \pmod{7}$ We can deduce $-3*4*2^{-1} = 1 \pmod{7}$ 2^{-1} can always be found quickly

Possible, but complicated

Summary

Type of problems to tackle with simultaneous mod equations: Toggle/cyclic states affected linearly by different sets of stimuli, eg bulbs and button presses, eg 7th Guest puzzle.

Use mod theory with:

Anything numeric that could be thought of in terms of remainders.

Use binary operations:

When dealing with sets which can be stored in full and whose intersections/unions etc must be calculated quickly For the binary Euclidean algorithm.